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There has been a lot of analytical development on gust response in the

past several years, but evidently the material has not been disseminated very
well.

Therefore, I would like to first discuss length scale, L; using the
spectrum differently; how a and L form a combined parameter; why L is not

important; and the exceedance number No.

Consider Figure 1 which deals with the scale of turbulence. Note that

sometimes it is improper to derive an artificial or apparent value for

turbulence length scale and then label it as the integral scale of turbulence.

Suppose we have some data, as depicted in Figure 1, and then we curve fit an

analytical function to the data. We do this specifically to deduce a value of

L that makes the function fit the data. We should be very careful and not

call this deduced value the integral scale of turbulence. Keep in mind that

what we are doing is not only measuring the turbulence but also measuring the

phemonenon that is causing the turbulence. The value of L may thus be
misleading.

Figure 2 shows the power spectrum as obtained from measurements of

turbulence and winds for very different intervals of sampling times ranging
from 1 second to 1 minute, to an hour, to a day, to a week, to a month, to a

year, and to five years. Just about all wavelengths of turbulence are

possible in this representation of the turbulence spectra. If we fit a chosen

function to the data, say avon Karman function, we might deduce a scale of

turbulence on the order of 1000 miles. Thus, be very careful how you describe

the scale of turbulence because it depends on the phenomenon and on the time

interval of sampling. In the case of sampling over years, we are working with
wavelengths that may be several thousand miles long.

For a number of years I have advocated that spectral functions should be

looked at in a different way; that is, use the same spectrum function or

functions that we have used before but interpret them differently. For

example, we can rearrange the von Karman spectrum function so that is appears
as shown in Figure 3. There is only a single line at the high frequencies.

We combine both the severity and scale of turbulence to form a new parameter,

designated as aI in the figure. Non-dimensionalizing the spectrum with this

parameter results in all the curves condensing to the elegant form shown.

Working with this modified form of the analytical function greatly simplifies

the rest of the analysis.

For example, suppose we have made measurements in a patch of turbulent

air and have deduced the power spectrum shown schematically in Figure 4. If
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you make use of the function depicted,in Figure 3, you can calculate
automatically the combined parameter aw/L I/_ by the equation:

OW

Ll/3
- [1.919 n15/3 @w(nl)] 1/2 (1)

This equation is obtained by simply going to the straight line portion of the

curve, any place along it, and inserting the values of the abscissa, R1, and

ordinate, @w(_l), into the equation. Do not try to separate the severity from
the scale in any more detail. They are combined in the parameter, oI, and

they should be used that way.

Let's also make an inference from this observation. For a given set of

data, ow/L 1/3 is a constant value. What does that infer? It infers the

results shown in Figure 5.

From this figure we can, if indeed we want to, split it out and write aw
as a function of L; specifically, aw = CL1/3. It is not surprising then that

the British have come up with the notion that the turbulence severity tends to

vary according to the third power of the gust gradient distance. Spectral

theory predicts this behavior if L is equated to gust gradient distance H as
is often supposed. But again, I remind you, although this behavior can be

inferred, it is not necessary to separate ow from L; oI should be used as a

combined parameter.

When we use the combined parameter, o1, we find the output spectrum of

the vertical acceleration for an airplane as a function of the reduced

frequency appears as shown in Figure 6. The influence of scale shows up only

in a minor way at the lefthand tails of the curves; the influence is

inconsequential with respect to the overall acceleration that the airplane

feels because the primary airplane response takes place out in the region of

frequency where scale is completely out of the picture. This observation is

true for all the airplanes I have examined so far. As an aside, we should

keep in mind that at the very low frequencies where scale does have a minor

effect, we are dealing with wavelengths where the pilot, the autopilot, or the

navigation system is controlling the airplane. The question of turbulence
scale is thus a moot point.

Some questions have arisen about the number of zero crossing values, No,

particularly with regard to certain pertinent integrals which do not converge.

However, if it is done right, there is no problem getting a meaningful value

of NO. The NO integral will converge to a realistic value if the proper
ingredients are included in the analysis. These are specifically the two

functions shown in the middle of the equation on Figure 7. This equation

depicts in simplified form the spectrum for the vertical acceleration of the

center of gravity (c.g.). The first function on the right-hand side of the

equation is a simplified form of the airplane transfer function. The last

function represents the gust spectrum in simplified form. The second function
takes into account gust penetration effects; notice the k2 falloff at high

frequency. The third term takes into account the effects of spanwise

variation in turbulence. This avoids the usual assumption that the gusts are
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uniform in the spanwise direction. Observe how the effect of spanwise
variation falls off inversely with k at the high frequency. Notice that the
spanwise effects function also contains the aspect ratio A. When the two
middle functions shown in Figure 7 are included, no problem is involved in
determining the value of NO.

Somesimplified results for N that have been obtained will now be
discussed. To start the discussion, _t is noted that the study of a number of
airplanes indicates that the reduced frequency ko is related to the reduced
short-period frequency by:

ko = 1.29 ksO.6 (2)

where

C
ks = ms _V (3)

In turn, the zero crossing value follows:

V
NO = _ ko (4)

Consider now the history of the gust loads analysis. If we consider the

load on an airplane when it enters a sharp-edged gust such as shown in Figure

8, the load or lift on the airplane is given by:

Equating this lift to an equivalent incremental acceleration gives:

L apSV
An = W =_U (6)

Note that the basic parameter which involves the combination of the variables

a, p, s, V, and W is an equation we have seen and used for years. Its

continued use, however, has led us into a trap. Later I will show that by

rearranging the form of the basic parameter, our results will be greatly

simplified. This equation is a first cut at establishing the vertical

acceleration the airplane will feel when entering a sharp edge gust. We

recognize, however, that gust penetration effects, non-steady lift effects,
and the vertical motion of the aircraft tend to alleviate the load. In the

early years--the 1940's--we introduced an alleviation factor (K) in the

equation:

apSV
An =-_-_-KgU (7)
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The factor was arbitrarily derived and was plotted as a function of the wing
loading on the airplane as illustrated in Figure 9. Werecognized, however,
that the wing loading was not the right parameter to use when we started
analyzing the acceleration in a more rational way, that is, when we began to
include penetration effects, non-steady lift effects, and airplane motion
effects.

Whenthese various effects were taken into account the results shown in
Figure 10 were obtained. The fundamental assumption leading to this figure is
that the airplane is a point masswhich moves in the vertical direction only;
the gust was assumeduniform across the span. The incremental acceleration is
noted to be of the sameform as obtained for a sharp edge gust, except that a
rationally derived alleviation factor, Kg, is introduced. Ka was found to be
a function of the mass parameter _. The gust shape assume_ was a one minus

cosine with a gust gradient distance H of I0 to 12 chords. U was taken to be

on the order of 50 fps. Actually, there is nothing magic in the choice of the

one-cosine gust; it is arbitrary. A triangle or half sine wave would have

served equally well.

Progressing historically, the power spectral techniques for analyzing

the response of aircraft in turbulence began to be introduced. Some basic

results obtained are shown in Figure 11. The equation for vertical
acceleration:

apSV K@ awaAn =_

V K¢
aw (8)

cg

is found to be analogous to the discrete gust equation, except that the gust
severity and acceleration values are now expressed in rms units. The

alleviation factor K_ is also found to be a function of the mass parameter _,
and in addition is found to depend on 2L/c. This ratio L/c is analogous to

the gust gradient distance in the discrete gust formulation. We should note
that if the gust spectrum had been introduced as depicted in Figure 3 (i.e.,

as a function of Ol), then the various curves in Figure 11 would collapse to
nearly a single curve.

When everything is put together in a simple rational way, the gust

response equation for acceleration can be shown to collapse to the very simple
result:

An = 1.5 IO_ 13 (9)

However, Equation 9 is the complete equation for designing an airplane for
gust penetrations; m is the angle of attack of the airplane necessary to

maintain level flight, where _ has the value at which CL = O. That is all
there is. The equation automatically takes into account the altitude of the
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airplane, the speed of the airplane, the weight, all the alleviation factors,
everything. I believe this to be a profound equation. People should be aware
of it and it should be introduced into the regulations. We must note,
however, that we have not been able to change the regulations for 40 years so
the chances of getting this equation into the regulations appear slim.

Note the inferences from the equation. If you run into turbulence, one
of the first things you want to do is slow down a little. To slow downbut
maintain altitude you've got to increase m. Increasing m gives you smaller
incremental accelerations. As I mentioned, this is a fascinating equation,
and I hope we can makethe aviation communityaware that it exists.

I also have derived generalized equations for No. If we had started
with the von Karmanexpression, the NO value is simply given by:

No : 1.084 (10)
,/_

Again, all flight conditions are taken into account in this equation. The

only item determining NO is m. If we had started with the Dryden spectrum,
the same form of the result is found but the constant is different:

No : 0.85___88 (11)
vrcm

Now consider the aspects of turbulence for simulator applications. There has
been trouble in the past with the simulations of turbulence in flight

simulators. This is primarily because only one component was used. There has

been some attempt to alleviate this situation with added sophistication but

overall this has not been realistic. Specifically, attempts have been made to

include non-statlonary turbulence such as a modulation times a stationary kind

of random turbulence. But invariably when pilots fly the simulator they

comment that "It does not seem realistic." It is not surprising that it does
not seem realistic because the simulation is not very realistic. As I have

mentioned on previous occasions, turbulence is three-dimensional in nature,
and this must be taken into account.

For example, as shown in Figure 12 there are, in general, three forces
and three moments due to turbulence. Not all these forces are important, not

all the moments are important. There are three, in particular, that are

significant. They are: (1) vertical force, (2) pitch moment, (3) rolling

moment. In many cases, pitching and rolling moment have not been taken into
account. We must look at the turbulence situation in a little more realistic

fashion. We cannot have a rolling moment if we make the assumption that the

turbulence is uniform in the spanwise direction. There is a spanwise gradient
in the turbulence just like there is a variation in longitudinal direction of

flight. When we take into account the spanwise gradient you will have rolling

moments on an airplane. All pilots know this fact. During approach an

airplane can suddenly be thrown into a 20 degree roll condition. So in

simulation studies we should at least include the vertical force, pitch
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moment, and roll momentbecause these are the important ones. In general we
have not done so. The question is, how do we do that? The remainder of the
presentation gives a quick insight as to how we can introduce the vertical
force and the two important moments into simulation studies in a very
realistic way.

Figure 13 introduces the notion of cross spectra. Along paths W1 and W2
we have different turbulence time histories. We have, in turn, differing
cross spectra according to the separation distances that are involved. Let's
take this into account in deriving the equations that produce the vertical
force and the rolling moment.

Consider the vertical force as an example.
rationally in a simulator. The lift is given by:

Wecan simulate this very

W (12)L = _ pSV2 V

or

L : ½ pV2 ScL (13)

where

w (14)
cL = a V

The actual form of the equation for L is much more complicated than shown, but

if we considered the equation in complete form and took the Fourier transform

of the lift coefficient you would arrive at the FcL function:

FcL(m ) = _ (P + iQ)(R + iS) Fw(m) (15)

Because we have non-steady llft effects, we work with complex numbers in the

frequency plane; (P + iQ) gives the in-phase and out-of-phase lift components

that are due to gust penetration effects; (R + iS) is a similar kind of
function but it occurs due to the spanwise variation in turbulence. It would

take a week of lectures to present the complete derivation of (R + iS) but
I'll indicate its basic nature as a final result. Finally, in Equation 15 we

have Fw(m) the Fourier transform of the turbulence itself. From the Fourier
transform we can readily deduce the power spectrum of the lift coefficient as:

a__2
@cL = V2 (p2 + Q2)(R2 + S2)@w (16)

An indication of the nature of some of these functions is given in Figure 14.

If we penetrated a sharp-edged gust, the lift would grow as sketched in the
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upper part of the figure. Converting to the frequency plane, the (p2 + Q2)
function as shown is obtained.

The function (R + iS) is the one term that comes about because of the

explicit consideration of the spanwise variation in turbulence. It involves

evaluating the integral:

2 I-S

R2+S2=2f f

0 -1

c(S + n) c(n) ¢12(iSl,m)dnds
Co Co

(17)

where c is wing chord and ¢12 is the cross spectra. Evaluating the integral
gives the function: 1/(1 + O.55AK). A good approximation to this function is

sketched in Figure 15.

For purposes of illustration, I have adapted:

Cw : (18)

1+ [_K] 2

as the power spectrum of the input gust. I have introduced oI, the combined

severity and scale parameter, and this makes all the spectra for cL fall at

the same points at high frequency.

Figure 16 shows the power spectrum of the lift coefficient as a function

of reduced frequency. When all the functions are put together the equation:

= a__22Ol2 2500
¢CL V2 1 + 4743k 2 + 45357k 4

(Ig)

represents a quite accurate curve fit of the spectrum result. We now ask the

question: Is there a differential equation which when considered could lead

to this function? The answer is yes, and the equation is:

213[_V] 2 CL + CL = 50 _ olW n (20)

This is a differential equation that would yield the spectrum given by

Equation 19. If we wish, we can have coefficients in the equation vary during

an approach according to the way the speed of the airplane is varying. The Wn

on the right-hand side of the equation is white noise as obtained from a white

noise generator; the equation automatically shapes the white noise to an

appropriate turbulence spectrum. The approach for simulation is illustrated

in Figure 17. Utilizing a white noise generator, feed the white noise into

the analog of this differential equation. A time-varying cL is generated
which you input into the simulator, specifically to the equation for vertical
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motion. A realistic simulation of vertical force on the airplane is thus

obtained.

For rolling moment (see Figure 18), it is essential to take into account

the spanwise variation in turbulence. The general equation for the spectrum

of the rolling moment coefficient is:

a2 A2
I (p2 + Q2)@ w (21)

@cM - 16v2 Ao2

where

b2 b

A =_- and Ao =_oo

The nature of the integral I of Equation 21 is:

2 1-S

I = 2 f I c(S + n) c(n) (S + n)n ¢12(151,m)dndsCo Co
0-I

(22)

is shown in Figure 19.

The rolling moment integral is a little more complicated than the
vertical force integral because we have to take moment arms into account. The

very definite pronounced peak in Figure 19 is associated with wavelengths near
the span of the aircraft. Indeed a very good approximation to the value of k

at which this peak occurs at x/A. A very useful and simple approximation to I

is:

I = 5.57_ × 0.32 - 0.26¢ (23)
7.84 + _2 1 + 0.8_

where

c ] [2 12:_-cA I + _--k
(24)

Note that a different frequency argument than k alone is found.

Figure 20 shows the spectrum for rolling moment coefficient as a
function of a reduced frequency. The equation:

a2 A2 33.8
@cM = a12 (25)

16V 2 A02 1 + 685k 2 + 1473k 4

166



fits that curve exceptionally well. There is a differential equation that can
lead to this spectrum which we will discuss later.

Figure 21 is added here to show again the non-importance of L. The
spectrum of the rolling momentcoefficient is at the to_ of the figure. When
we include the transfer function for the airplane, IHiL, that is associated
with roll dynamic behavior, you get the output spectrum for roll angle as
shownat the bottom of the figure. The scale of turbulence is not important
in the consideration because the predominant response is in the frequency
range that is not influenced by the scale of turbulence.

The differential equation for the rolling momentcoefficient is:

38[_V] 2 cM + 28_VVCM+ CM- a A 5.81 Wn
4V Ao

(26)

Again, as in the case of the vertical force (see Figure 22), you have a white

noise generator, you feed its output into the analog of the differential

equation (Equation 26), and out comes the time varying moment coefficient; you

input this to your simulator, specifically to the rolling equation of motion.

The simulation of the rolling moment due to a turbulence encounter will then

automatically be taken into account.

QUESTION: Hal Murrow (NASA Langley). Two points I would like to make. On

the spectrum correction factor, I agree that there needs to be a correction.
The point that is unclear is the magnitude of the correction and probably the

biggest reason for this is the fact that in our instrumentation system for the
B-57B we have some anti-aliasing filters. Their effect has to also be taken

into account to determine the magnitude of the correction to apply. The
second point I wanted to make is that we are talking about hypersonic

airplanes nowadays, the Orient Express, that sort of thing. If you think of

the primary response of the airplane as being in the short-period mode and

calculate what that would be, it would go down to the very low frequencies or

wavelengths. In these regions it would make a difference as to what is the
value of L. I'm not convinced that L and _ are directly related in all cases.

ANSWER: That is something we will argue about in the future.

get down to those low frequencies with any airplane.

You will not
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Figure 1. Curve fit of an analytical function to deduce a value for L.
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Figure 2. Power spectrum.
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Figure 3. Avon Karman spectrum.

Figure 4. Example of a power spectrum for a patch of turbulent air.
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Figure 5.
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Influence from the relationship of _w' L, and C; namely,
C = _ILl13.
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Figure 6.
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Example of an output spectrum for vertical acceleration of
an airplane which illustrates the influence of the scale.
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Cz - k 2 × B2 i + 0 55AKI + aI + 1.5_k + _2Mk2 × "

_ Transfer Functio<n
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 kl j3Gust Spectrum

Spanwise Effects

Gust Penetration Effects

Figure 7. Simplified form of the spectrum of vertical acceleration
of the center of gravity.

Figure 8. Sharp edge gust.
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Figure 9.
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A 1940's version of the gust alleviation factor as a
function of wing loading.
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Figure 10. The gust alleviation factor as a function of mass parameter.
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Figure 11.
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The gust alleviation factor as a function of the mass parameter
as well as showing its dependence on gust gradient distance.
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Figure 12. The forces and moments due to turbulence,
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Figure 13.
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lllustrating the effect of separation distance on cross spectra.
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Figure 14.
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Lift relationships as a function of time
and frequency components,
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Figure 15. Spanwise variation effects with a consideration of cross spectra,
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Figure 16. Power spectrum of the lift coefficient as a function of
reduced frequency.
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Figure 17. A realistic simulation approach.
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Figure 18. Spanwise variation in turbulence illustration.
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Figure 19.

k

Rolling moment integral relationship to reduced frequency.
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Figure 20. Rolling moment coefficient as a function of reduced frequency.
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Figure 21.
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Output spectrum (@@) obtained from spectrum of rolling moment
coefficient (_CM) by^a consideration of the transfer function

IHI 2, i.e., @@= IHIZ@CM.
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Figure 22. Roll behavior simulation.
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